
www.manaraa.com

Using Evolving Storage Structures for Data Storage

Syed Saif ur Rahman
Department of Technical and Business Information Systems

Faculty of Computer Science
Otto-von-Guericke University of Magdeburg, Germany

srahman@ovgu.de

ABSTRACT
Different data storage structures suit different data man-
agement scenarios, therefore, a universal data storage struc-
ture is not possible. Furthermore, each data storage struc-
ture has different resource consumption because of their
unique execution complexity. Self-tuning data management
systems need a mechanism to select appropriate data stor-
age structure and to adapt it with changing data manage-
ment requirements. We propose Evolving Storage Struc-
tures for self-tuning data management system that supports
customization and adaptation with changing data manage-
ment needs.

Categories and Subject Descriptors
H.2 [Database Management]: Database architectures,
Physical Design, Access methods

General Terms
Design, Performance

Keywords
Cellular DBMS Architecture, Evolution, Storage Structures,
Self-tuning

1. MOTIVATION AND CONTRIBUTION
Existing data management solutions are complex [3]. They

are full of functionalities that are added over time. Fur-
thermore, most of functionalities are tightly integrated with
each other. It is difficult to customize an existing data man-
agement solution through removing unused functionalities.
We argue that unused functionalities in data management
solutions cause overheads that contribute to more resource
consumption, which in turn reduces performance. We eval-
uated an existing data management solution, i.e., Berke-
leyDB [9,10] with our custom micro benchmark to prove our
argument. Results from Saake et al. in [12] also strengthens
our argument by presenting, how existing database systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FIT ’10, December 21-23, 2010, Islamabad, Pakistan.
Copyright 2010 ACM 978-1-4503-0342-2/10/12 ...$10.00.

can be downsized and in turn can give better performance.
According to our evaluation and results from Saake et al.
in [12], we identified the need for customization of data man-
agement solutions at fine-granularity.

Different storage structures in existing data management
solutions have different execution complexity. By execution
complexity, we mean the memory footprint, function calls,
branches and mispredictions, cache references and misses,
etc., by a storage structure during data management oper-
ations. For clarity, we classified storage structure complex-
ity into three categories, i.e., simple, average, and complex.
We argue that simple storage structures are appropriate for
small data management tasks and consume fewer resources
in comparison with complex storage structures. As the data
size grows, average complexity storage structures perform
better with appropriate resource consumption in compari-
son with simple and complex storage structures. For large
data management tasks, complex storage structures are the
appropriate solution. To be more concrete with our exam-
ple, we use a sample classification in Table 1, which uses the
results provided by Lehman and Carey in [7].

Furthermore, it can be observed from Table 1 that differ-
ent storage structures are suitable for different workloads
and data sizes. Each storage structure exposes different
merits and demerits. We cannot find a universal storage
structure that can perform optimally for all data sizes and
workloads with appropriate resource consumption. To prove
our argument, we evaluated different storage structures over
different data sizes with similar workload. Details about
evaluation and results are provided in Section 4.

In real world scenarios, we face diversified data manage-
ment needs. Different storage structures are appropriate
for different scenarios, which require extensive tuning. Self-
tuning data management solutions attempt to solve this
problem automatically with minimum human intervention,
however, there exist the need for a mechanism that should
facilitate appropriate storage structure selection and tuning.
We propose Evolving Storage Structures as an alternative
solution, which supports selection of an appropriate stor-
age structure through customization and supports change in
storage structure with change in data management needs.

During query processing, different DBMS operations op-
erate over a source data in logical order to generate de-
sired results. Especially in column-oriented DBMS, such as
the MonetDB1 with column-at-a-time MIL execution model,
these operations generate intermediate results that vary in
size and number of attributes [2]. DBMS may materialize

1 “MonetDB”, http://monetdb.cwi.nl/

http://monetdb.cwi.nl/
srahman
Textfeld
Preliminary Author Version

www.manaraa.com

Storage structure Complexity class Data size class Benefits Problems

Sorted Array Simple Small Read optimized (Good data reference locality)
Cache and space efficient

Write/Update (Requires rearrangement)

Heap Array Simple Small Write optimized
Search time (Poor data reference locality)
Complete scan for duplicates

Sorted List Average Medium Read optimized Write/Update(Requires rearrangement)

Heap List Average Medium Write optimized
Search time (Poor data reference locality)
Complete scan for duplicates

Hash Table Average/Complex Medium/Large
Write optimized
Memory efficient
Unordered data access

High space overhead (For dynamic hash tables)
It does not preserve order
Complete bucket scan for duplicates
Range queries

B+-Tree Average/Complex Medium/Large

Suited for disk use
Fast search and update
More cache conscious
Range queries efficient

Not good for memory

Table 1: Storage structures classification.

these results to reduce the query processing time. For ex-
ample, MonetDB uses the binary association table (BAT)
to store intermediate results. We argue that we cannot de-
termine the most optimal storage structure for these inter-
mediate results, and we propose the use of evolving storage
structures for intermediate results materialization.

In this paper, Section 2 explains concepts of evolving stor-
age structures. Section 3 introduces the concept of the evo-
lution path and proposes schemes to alter the inefficient evo-
lution path. Section 4 discusses the evaluation of presented
arguments and approaches. Section 5 documents the related
work. Section 6 concludes the paper with few hints for fu-
ture work.

2. EVOLVING STORAGE STRUCTURES
Evolving storage structures are hierarchically-organized

storage structures. By a hierarchical organization, we mean
a composition of similar or different storage structures in a
hierarchy as depicted in Figure 1. Evolving storage structure
is initialized as an atomic, autonomic, and customized mini-
mal storage structure, e.g., Page or Sorted List of pages. By
customization, we mean the selection of an appropriate stor-
age structure, i.e., either page saves data as a sorted array or
a heap array. Each storage structure stores key/value pair of
data. By atomicity, we mean that storage structure exposes
an API, and it is capable of storing data independently, i.e.,
a single page exposes an API, and it can be used to store
data independently. By autonomy, we mean the capabil-
ity to monitor, diagnose, and tune the storage structure.
To hide the complexity of differences in storage structures,
evolving storage structures expose consistent API across the
hierarchy.

Evolving storage structures impose storage capacity con-
straint on each storage structure to ensure that each storage
structure has predictable performance for data management
tasks. As long as data can be stored within a single page, it
is used for data storage, but when data size reaches the limit
of the page storage capacity. Storage structure is evolved,
i.e., for example, storage structure A (i.e., a page) evolves
into new storage structure B such that A becomes an integral
unit of B. We call this process “Evolution”. A new storage
structure (e.g., Sorted List or Hash table or B-Tree of mul-
tiple pages) is selected based on known heuristics and the
monitoring and analysis of workload performed during the
data storage in a page. Storage structure hierarchy should
also consider the hardware hierarchy for next optimal stor-
age structure selection. As depicted in Figure 1, the initial
smallest and simplest structure is optimized for cache, than
one above is optimized for memory, and than one above

is optimized for disk drive. A sample scenario of storage
structure evolution in evolving storage structures is shown
in Figure 3.

Limit = 2K
Event = Not Enough Storage

EvolveTo = Sorted List

Sorted Array

EvolveTo = Sorted List

Limit = 256 Sorted Array

Sorted List

Limit = 512 Sorted List
Event = New Sorted List Failed

EvolveTo = XXX

Limit = 256 Sorted Array
Event = New Sorted Array Failed

EvolveTo = B+-Tree B+-Tree

Figure 3: Sample hierarchically-organized storage structure
evolution scenario.

During evolution, we also recommend an optional mecha-
nism to increase the efficiency of evolving storage structures,
i.e., splitting and compaction. Splitting and compaction
means to break the storage structure into suitable small-
sized structures, such that storage structure A is distributed
into n compact structures A’. The need for a splitting arises
when we use a large structure initially to reduce resource
consumption or to increase the reliability of workload moni-
toring decision. For example, we initialize an evolving stor-
age structure as a page with page size of 8KB. Then, when
we evolve this page into a higher-level structure (e.g., Sorted
List), it is recommended to split this page into multiple small
size pages with equal data distribution among them.

Evolving storage structures are highly customizable and
reconfigurable. Figure 2 demonstrates the customizability
and reconfigurability of a sample evolving storage structure.
It shows that at each level of hierarchy, a storage structure
can be customized. It also shows that at each evolution
event, it is decided what will be the next storage structure
type in a hierarchy? Each new level storage structure is
composed of multiple lower level storage structures.

3. EVOLUTION PATH
Evolution path is the mechanism to define how storage

structures evolve from smallest simple storage structure into
large complex storage structures. It consists of many storage
structure/mutation rules’ entries. Each storage structure
can have multiple mutation rules mapped to it. Each mu-
tation rule is composed of three information elements, i.e.,
Event, Heredity-based-selection, and Mutation. An event
identifies, when a mutation rule should be executed. Heredity-
based-selection identifies precisely, when evolution should
occur based on the heredity information gathered for cur-
rent storage structure. Mutation defines actions that should

www.manaraa.com

TTree (B)

+Memory

Persistent

O
p

ti
m

iz
a
ti

o
n

E
v
o

lu
ti

o
n

 w
it

h
 d

a
ta

 g
ro

w
th

A
u

to
n

o
m

ic
 s

tr
u

c
tu

re
 s

e
le

c
ti

o
n

B+Tree (C)

x

B B

…

Page (A)

Data

+

A A

…

Cache

Memory

O
p

ti
m

iz
a
ti

o
n

E
v
o

lu
ti

o
n

 w
it

h
 d

a
ta

 g
ro

w
th

A
u

to
n

o
m

ic
 s

tr
u

c
tu

re
 s

e
le

c
ti

o
n

Figure 1: Evolving hierarchically-
organized storage structure.

Heap Array
Sorted

Array

Heap List Sorted List B+-Tree

Evolution Event

T+-Tree

B+-TreeT+-Tree

B+-TreeT+-TreeHash Table

E
vo
lu
tio
n

H
ierarch

ical C
o
m
p
o
sitio

n

Storage

Manager

PageCell

Composite

Cell

High-level

Composite

Cell (HLC)

2nd-level

High-level

Composite

Cell

Architectural

Name

Implementation

Name

HLComposite

HHLComposite

Minimal

Simple

Storage

Structure

Level 3

Level 2

Level 1

Level 4

Level n

Storage structures composed of level 1 storage structures

Storage structures composed of level 2 storage structures

Storage structures composed of level 3 storage structures

Storage structures composed of level n-1 storage structures

Figure 2: Evolving hierarchically-organized storage structure configurations.

be performed to evolve a storage structure. Heredity infor-
mation means gathered statistics about a storage structure,
e.g., workload type, data access pattern, previous evolution
details, etc.

3.1 Mechanisms to alter an evolution path
An evolution path can be analyzed over multiple repeti-

tions to identify either it is optimal or not. We call the repe-
tition of an evolution path as evolution cycles and statistics
generated over multiple evolution cycles are stored as part
of heredity information. Evolution cycles occur frequently
when evolving storage structures are used for intermediate
result materialization during query processing, but it might
never occur for data storage scenario where data only in-
creases. If an initial evolution path is found to be sub-
optimal, i.e., either for the query-intensive data the query
time is high or for the write-intensive data, the write and
update time is high, we propose three mechanisms to alter
an evolution path, i.e., Disaster, War, and Preaching.

Disaster : Disaster mechanism identifies a new evolu-
tion path based on the heredity information and mutation
rules. Once started, it executes running DBMS operations
and queues the new arriving requests. It instantiates the new
instance of storage structure based on a new evolution path
and transfers the data to new storage structure all-together.
Old storage structure is considered dead after data transfer
and is eliminated. Once data transfer is completed, queued
requests of new DBMS operations are completed with/over
the new storage structure. Disaster mechanism is optimal
for storage structures with the small data and light work-
load. It consumes resources all-together to optimize the stor-
age structure. Furthermore, it improves the performance for
all workloads simultaneously as complete storage structure
is evolved all-together. We term the time to adapt the new
storage structure based on the updated evolution path as
the “Revolution Period”.

War : War mechanism works like disaster mechanism
to identify a new evolution path. It has a different data
transfer strategy. It transfers data recursively starting from
fine-grained atomic cell-level2(atomic storage structure unit,

2Cell is a Cellular DBMS architecture term used for an
atomic, autonomic, and customized instance of an embedded
database. For details please refer [14]

e.g., Page. See Figure 2) based on a new evolution path. One
by one for each cell, data is transferred to a new cell, and
then the old cell is considered dead and is eliminated. In
war mechanism only the DBMS operations of a single cell
are completed, and new operations are queued before the
data transfer, which ensures that DBMS operations that
do not involve the particular cell can be completed without
any delay. We suggest that war mechanism is appropriate for
medium-sized data storage with the medium-level workload.

Preaching : Preaching mechanism works like war mech-
anism except the difference that decision to transfer data to
a new cell is decided according to the cell state. Preaching
mechanism may take longer to change cells, but it attempts
to ensure that minimum overhead is incurred for ongoing
DBMS operations. A cell waits for data transfer until/un-
less either it is in waiting or idle state, or it contains the
workload well within the threshold defined by the DBMS
administrator.

4. EVALUATION
In this section, we present our evaluation of four important

factors, i.e.,
• Impact of unused functionalities on storage structures

performance.
• Impact of data size growth on storage structures per-

formance.
• Impact of storage structure complexity on resource

consumption.
• Performance improvement for evolving storage struc-

tures.
To present the impact of unused functionalities on stor-
age structures performance, we used Berkeley DB as our
data management solution. As shown in Figure 4, RECNO,
Queue, Hash, and B+-Tree represent the storage structures
of Berkeley DB that we used for evaluation. To analyze the
impact of data growth on storage structures performance,
the impact of storage structures complexity on resource con-
sumption, and the performance gains of evolving storage
structures, we used the implementation of storage structures
in our Cellular DBMS prototype3 [14].

3 “Cellular DBMS”, http://wwwiti.cs.uni-magdeburg.
de/~srahman/CellularDBMS/index.php (Please refer to we-
blink for all related publications and evaluation prototype

http://wwwiti.cs.uni-magdeburg.de/~srahman/CellularDBMS/index.php
http://wwwiti.cs.uni-magdeburg.de/~srahman/CellularDBMS/index.php

www.manaraa.com

0

50000000

100000000

150000000

200000000

250000000

300000000

0

500000

1000000

1500000

2000000

2500000

3000000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash

(M)

Hash (D) B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
c
y

c
le

s

B
y

te
s

Minimal configurations consumes less CPU cycles and memory

Memory CPU Cycles

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash (M) Hash (D) B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
I1

 m
is

s
e

s

N
o

.
o

f
L
2

i
m

is
s
e

s

Minimal configurations causes less instruction cache misses

Cache Misses L2i Cache Misses I1

Minimal configurations causes less data cache write misses

Cache Misses D1 wr Cache Misses L2d wr Cache Misses D1 rd Cache Misses L2d rd

Minimal configurations causes less branches and their mispredictions

Mispredicts Branches

0

50000000

100000000

150000000

200000000

250000000

300000000

0

500000

1000000

1500000

2000000

2500000

3000000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash

(M)

Hash (D) B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
c
y

c
le

s

B
y

te
s

Minimal configurations consumes less CPU cycles and memory

Memory CPU Cycles

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash (M) Hash (D) B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
I1

 m
is

s
e

s

N
o

.
o

f
L
2

i
m

is
s
e

s

Minimal configurations causes less instruction cache misses

Cache Misses L2i Cache Misses I1

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0

5000

10000

15000

20000

25000

30000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash (M) Hash (D) B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
D

1
 w

r
a

n
d

 L
2

d
 w

r
m

is
s
e

s

N
o

.
o

f
D

1
 r

d
 a

n
d

 L
2

d
 r

d
 m

is
s
e

s

Minimal configurations causes less data cache write misses

Cache Misses D1 wr Cache Misses L2d wr Cache Misses D1 rd Cache Misses L2d rd

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

0

500000

1000000

1500000

2000000

2500000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash

(M)

Hash (D) B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
b

ra
n

c
h

e
s

N
o

.
o

f
m

is
p

re
d

ic
ti

o
n

s

Minimal configurations causes less branches and their mispredictions

Mispredicts Branches

Figure 4: Micro benchmark results presenting the impact of unused functionalities on storage structures performance using
the BerkeleyDB.

To compare the performance of different storage struc-
tures, we used CPU cycles, Heap, and Cache as resources.
The reason for selecting these parameters is the change in
bottlenecks. In the last two decades, processor speed has
been increasing at a much faster rate of around 60% per year
in comparison with the memory speed that increases around
10% per year [11]. Furthermore, with the increase in cache
size, the latency for cache access is also increasing [6]. Now
it is essential to make optimal use of increased processing
power available to DBMS. Optimal processing power usage
requires optimal cache usage by reducing the cache misses.
It also requires efficient utilization of main memories.

For storage structures evaluation, we set up a micro bench-
mark with repeated insertion, selection, and deletion of key/-
value pairs of data using API-based access method. The
reason for using a custom micro benchmark is that we only
want to focus on storage structures, and we are using storage
structures with API-based access method(no query process-
ing overhead). The data contain keys in ascending, descend-
ing, and random order, which also represents their inser-
tion, selection, and deletion order in the database. All stor-
age structures used in a micro benchmark operate in main-
memory as we focused on the impact of storage structure
complexity on processor, memory, and cache usage. Largest
data storage unit contains 55.57 KB of data spreading over
4048 key/value pairs.

We used OpenSuse 11.2 operating on Intel(R) Core(TM)2
Duo CPU E6750 @ 2.66GHz with 4 GB of RAM. It contains
two 32 KBytes 8-way set associative L1 instruction and data
cache with 64-byte line size; and one 4 MB 16-way set asso-
ciative L2 cache with 64-byte line size. We used Valgrind [15]

binaries.)

to generate cache references and misses, and heap usage. We
measured execution speed by taking the average of CPU cy-
cles observed over multiple iteration of micro benchmark.
All parameters presented in Figure 4, 6, and 7 are valid for
comparison of structures and should not be considered as
the benchmark for the Cellular DBMS performance. For
better visibility of charts, we used few abbreviations that
mean as follows: I=Instruction cache reference, D rd= Data
(read) cache reference, D wr=Data (write) cache reference,
I1= L1 Instruction cache miss, D1 rd=L1 Data (read) cache
miss, D1 wr=L1 Data (write) cache miss, L2i=L2 Instruc-
tion cache miss, L2d rd=L2 Data (read) cache miss, and L2d
wr=L2 Data (write) cache miss. For Berkeley DB, we used
version 4.8.26.

In Figure 6 and 7, storage structures are similar as we de-
fined in Table 1 except of two storage structures, i.e., HLC
SL and HLC B+-Tree. HLC stands for High-Level Compos-
ite in the Cellular DBMS architecture. SL is short for Sorted
List. HLC SL means a B+-Tree-based structure where each
leaf node is a Sorted List, where as HLC B+-Tree means a
B+-Tree-based structure where each leaf node is a B+-Tree.
HLC SL and HLC B+-Tree storage structures are depicted
in Figure 5.

To evaluate the impact of unused functionalities on stor-
age structures performance, we tested all four Berkeley DB
storage structures with two Berkeley DB configurations, i.e.,
Default(D) and Minimal(M). Default configuration contains
all features of Berkeley DB by default, whereas for minimal
configuration, we removed all removable features that in-
clude following flags: –disable-largefile, –disable-cryptography,
–disable-hash, –disable-queue, –disable-replication, –disable-
statistics, –disable-verify, –disable-partition, –disable-compression,

www.manaraa.com

150000

200000

250000

300000

350000

60000

80000

100000

120000

140000

160000

C
P

U
 C

y
cl

e
s

B
y

te
s

Simple storage structures consumes less memory and CPU cycles for small data

management

32 Records Memory 32 Records CPU Cycles

300000000

400000000

500000000

600000000

700000000

800000000

1000000

1500000

2000000

2500000

3000000

3500000

C
P

U
 C

Y
cl

e
s

B
y

te
s

Simple storage structures consumes more CPU cycles as data size grows

4048 Records Memory 4048 Records CPU Cycles

0

50000

100000

150000

200000

250000

300000

350000

0

20000

40000

60000

80000

100000

120000

140000

160000

Sorted

Array

Heap Array Sorted List Heap List B+-Tree HLC SL HLC B+-

Tree

C
P

U
 C

y
cl

e
s

B
y

te
s

Simple storage structures consumes less memory and CPU cycles for small data

management

32 Records Memory 32 Records CPU Cycles

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Sorted

Array

Heap

Array

Sorted List Heap List B+-Tree HLC SL HLC B+-

Tree

C
P

U
 C

Y
cl

e
s

B
y

te
s

Simple storage structures consumes more CPU cycles as data size grows

4048 Records Memory 4048 Records CPU Cycles

Figure 6: Micro benchmark results presenting the impact of data growth and increase in complexity on storage structures
performance using the Cellular DBMS prototype.

Sorted List

Page Page Page Page ...

Sorted List

Page Page Page Page ... SL SL ...

...

HLC SL

B+-Tree ...

...

HLC B+-Tree

B+-Tree

Page ...

...

B+-Tree

PagePagePage Page...

...

Page ...

...

B+-Tree

PagePagePage Page...

...

Figure 5: HLC SL and HLC B+-Tree storage structures in
the Cellular DBMS prototype.

–disable-mutexsupport, and –disable-atomicsupport. For RECNO
and Queue, –disable-queue flag is not used, whereas for
Hash, –disable-hash is not used. It can be observed that
minimal configuration consumes much fewer resources than
the default configuration for all storage structures and thus
have better performance. Furthermore, it can also be ob-
served that for our benchmark data of 4048 records, simple
storage structures perform better than B+-Tree. To further
strengthen this argument, we also tested the Cellular DBMS
prototype storage structures with different data sizes of 32
and 4048 records. It can be observed from Figure 6 that
simple and small storage structures, such as Sorted Array
and Heap Array perform better than other complex storage
structures by consuming less memory and CPU cycles for
small data of 32 records. For 4048 records, simple storage
structures underperform, whereas other storage structures
perform better. We also tested these structures on data size
of 100000 records. Hash table performed best for 100000
records data size. Then we also tested these structures on
data size of 10000000 records. B+-Tree outperformed hash
table for 10000000 records data size (Test binaries and re-
sults for 100000 and 10000000 records are available at the
Cellular DBMS weblink).

To evaluate the performance gain using evolving storage
structures, we tested our benchmark using evolving versions
of B+-Tree, HLC SL, and HLC B+-Tree storage structures.
It can be observed from Figure 7 that each evolving stor-

age structure version performs better than normal structures
in resource consumption and thus exhibit enhanced perfor-
mance.

5. RELATED WORK
Hierarchically-organized storage structures have been in

use in the data warehousing domain. Morzy et al. in [8]
proposed hierarchical bitmap index for indexing set-valued
attributes. Later, Chmiel et al. in [5] extended that con-
cept to present hierarchically-organized bitmap index for in-
dexing dimensional data. Bender et al. proposed the cache
oblivious B-Trees [1] that performs the optimal search across
different hierarchical memories with varying memory lev-
els, cache size, and cache line size. Fractal prefetching B+-
Trees [4] proposed by Chen et al. is the most relevant work
for the evolving storage structures and is similar in concept
to cache oblivious B-Trees with an additional concept of
prefetching. Fractal prefetching B+-Trees are optimized for
both cache and disk performance, which is also a goal for
the evolving storage structures.

Evolving storage structures use hierarchical organization
differently. It allows the use of different storage structures
at the different level of hierarchy and increases the hierarchy
with data growth autonomically making efficient use of un-
derlying hardware. Evolving storage structures expose the
consistent interface for different storage structures across the
hierarchy to hide the internal complexity of storage struc-
tures from other functionalities and end-user. It also allows
the use of any storage structure atomically, i.e., we can also
make use of single page as a storage structure for manag-
ing small database. Evolving storage structures evolve from
simple to complex storage structures with data growth to
ensure optimal usage of resources.

6. CONCLUSION AND FUTURE WORK
We presented Evolving Storage Structures as a storage

structure for self-tuning data management systems. We
evaluated different storage structures using micro bench-
mark to raise the awareness of impact of unused functional-
ities, storage structure complexity, and data size growth on
storage structures resource consumption and performance.
Our results also showed reduced resource consumption and
improved performance for evolving storage structures. Eval-
uation of evolving storage structures using TPC BenchmarkTMH
(TPC-H) [13] is in progress.

www.manaraa.com

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

0

500000

1000000

1500000

2000000

2500000

c
y

c
le

s

b
y

te
s

Evolving storage structures reduces memory and CPU cycles usage

Memory CPU Cycles

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

0

10000000

20000000

30000000

40000000

50000000

60000000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

In
s
tr

u
c
ti

o
n

 R
e

fe
re

n
c
e

s

D
a

ta
 R

e
fe

re
n

c
e

s

Evolving storage structures generates less cache references

Cache References D rd Cache References D wr Cache References I

Evolving storage structures causes less data cache misses

Cache Misses D1 wr Cache Misses L2d wr Cache Misses D1 rd Cache Misses L2d rd

Evolving storage structures generates less branches and their misprediction

Branches Mispredicts

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

0

500000

1000000

1500000

2000000

2500000

c
y

c
le

s

b
y

te
s

Evolving storage structures reduces memory and CPU cycles usage

Memory CPU Cycles

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

0

10000000

20000000

30000000

40000000

50000000

60000000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

In
s
tr

u
c
ti

o
n

 R
e

fe
re

n
c
e

s

D
a

ta
 R

e
fe

re
n

c
e

s

Evolving storage structures generates less cache references

Cache References D rd Cache References D wr Cache References I

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0

5000

10000

15000

20000

25000

HLC SL HLC SL Evolving HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

W
r
it

e
 M

is
s
e

s

R
e

a
d

 M
is

s
e

s

Evolving storage structures causes less data cache misses

Cache Misses D1 wr Cache Misses L2d wr Cache Misses D1 rd Cache Misses L2d rd

360000

380000

400000

420000

440000

460000

480000

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

N
o

.
o

f
m

is
p

re
d

ic
ti

o
n

s

N
o

.
o

f
b

ra
n

c
h

e
s

Evolving storage structures generates less branches and their misprediction

Branches Mispredicts

Figure 7: Micro benchmark results presenting performance improvement and reduced resource consumption using evolving
storage structures.

7. ACKNOWLEDGMENTS
Syed Saif ur Rahman is a HEC-DAAD Scholar funded by

Higher Education Commission of Pakistan and NESCOM,
Pakistan.

8. REFERENCES
[1] M. A. Bender, E. D. Demaine, and M. Farach-Colton.

Cache-oblivious B-trees. In Proc. 41st Annual
Symposium on Foundations of Computer Science,
pages 399–. IEEE Computer Society, 2000.

[2] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-Pipelining Query Execution.
In Proc. Biennial Conf. on Innovative Data Systems
Research, pages 225–237, January 2005.

[3] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning
RISC-Style Database System. In Proc. Int’l Conf. on
Very Large Data Bases, pages 1–10. Morgan
Kaufmann Publishers Inc., 2000.

[4] S. Chen, P. B. Gibbons, T. C. Mowry, and
G. Valentin. Fractal prefetching B+-Trees: optimizing
both cache and disk performance. In Proc. Int’l Conf.
on Management of data, pages 157–168. ACM, 2002.

[5] J. Chmiel, T. Morzy, and R. Wrembel. HOBI:
Hierarchically Organized Bitmap Index for Indexing
Dimensional Data. In Proc. Int’l Conf. on Data
Warehousing and Knowledge Discovery, pages 87–98.
Springer-Verlag, 2009.

[6] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi. Database Servers on Chip
Multiprocessors: Limitations and Opportunities. In

Proc. Biennial Conf. on Innovative Data Systems
Research, pages 79–87, January 2007.

[7] T. J. Lehman and M. J. Carey. A Study of Index
Structures for Main Memory Database Management
Systems. In Proc. Int’l Conf. on Very Large Data
Bases, pages 294–303. Morgan Kaufmann Publishers
Inc., 1986.

[8] M. Morzy, T. Morzy, A. Nanopoulos, and
Y. Manolopoulos. Hierarchical Bitmap Index: An
Efficient and Scalable Indexing Technique for
Set-Valued Attributes. In ADBIS, volume 2798, pages
236–252. Springer-Verlag, 2003.

[9] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB.
In Proc. Annual Conf. on USENIX Annual Technical
Conference, pages 43–43. USENIX Association, 1999.

[10] Oracle Berkeley DB.
http://www.oracle.com/technology/products/berkeley-
db/index.html.

[11] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick.
A Case for Intelligent RAM. IEEE Micro, 17:34–44,
March 1997.

[12] G. Saake, M. Rosenmüller, N. Siegmund, C. Kästner,
and T. Leich. Downsizing Data Management for
Embedded Systems. Egyptian Computer Science
Journal (ECS), 31(1):1–13, January 2009.

[13] TPC-H. http://www.tpc.org/tpch/.

[14] S. S. ur Rahman, V. Köppen, and G. Saake. Cellular
DBMS: An Attempt Towards Biologically-Inspired
Data Management. Journal of Digital Information
Management, 8(2):117–128, April 2010.

[15] Valgrind. http://www.valgrind.org.

	Motivation and Contribution
	Evolving Storage Structures
	Evolution Path
	Mechanisms to alter an evolution path

	Evaluation
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

